Determining Cardiac Fiber Orientation Using FSL and Registered Ultrasound/DTI volumes.

نویسندگان

  • James Dormer
  • Xulei Qin
  • Ming Shen
  • Silun Wang
  • Xiaodong Zhang
  • Rong Jiang
  • Mary B Wagner
  • Baowei Fei
چکیده

Accurate extraction of cardiac fiber orientation from diffusion tensor imaging is important for determining heart structure and function. However, the acquisition of magnetic resonance (MR) diffusion tensor images is costly and time consuming. By comparison, cardiac ultrasound imaging is rapid and relatively inexpensive, but it lacks the capability to directly measure fiber orientations. In order to create a detailed heart model from ultrasound data, a three-dimensional (3D) diffusion tensor imaging (DTI) with known fiber orientations can be registered to an ultrasound volume through a geometric mask. After registration, the cardiac orientations from the template DTI can be mapped to the heart using a deformable transformation field. This process depends heavily on accurate fiber orientation extraction from the DTI. In this study, we use the FMRIB Software Library (FSL) to determine cardiac fiber orientations in diffusion weighted images. For the registration between ultrasound and MRI volumes, we achieved an average Dice similarity coefficient (DSC) of 81.6±2.1%. For the estimation of fiber orientations from the proposed method, we achieved an acute angle error (AAE) of 22.7±3.1° as compared to the direct measurements from DTI. This work provides a new approach to generate cardiac fiber orientation that may be used for many cardiac applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiograp...

متن کامل

Simulating cardiac ultrasound image based on MR diffusion tensor imaging.

PURPOSE Cardiac ultrasound simulation can have important applications in the design of ultrasound systems, understanding the interaction effect between ultrasound and tissue and setting the ground truth for validating quantification methods. Current ultrasound simulation methods fail to simulate the myocardial intensity anisotropies. New simulation methods are needed in order to simulate realis...

متن کامل

The relationship between susceptibility weighted phase and white matter fiber orientation

Introduction: The origin of contrast in susceptibility weighted phase imaging (1) is not yet fully understood. Both grey and white matter show considerable heterogeneity on phase images (2) and white matter T2* was also found to be heterogeneous (3). Subjects and Method: Data from 2 healthy volunteers (1 female, 1 male, ages 29 and 31) were acquired on a Philips Achieva 3.0T system. SWI data we...

متن کامل

3D in vivo imaging of rat hearts by high frequency ultrasound and its application in myofiber orientation wrapping.

Cardiac ultrasound plays an important role in the imaging of hearts in basic cardiovascular research and clinical examinations. 3D ultrasound imaging can provide the geometry or motion information of the heart. Especially, the wrapping of cardiac fiber orientations to the ultrasound volume could supply useful information on the stress distributions and electric action spreading. However, how to...

متن کامل

Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts

Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of SPIE--the International Society for Optical Engineering

دوره 9790  شماره 

صفحات  -

تاریخ انتشار 2016